

## **NAMIBIA UNIVERSITY**

# OF SCIENCE AND TECHNOLOGY FACULTY OF HEALTH AND APPLIED SCIENCES

#### **DEPARTMENT OF MATHEMATICS AND STATISTICS**

| QUALIFICATION: Bachelor of Science in A | Applied Mathematics and Statistics      |
|-----------------------------------------|-----------------------------------------|
| QUALIFICATION CODE: 35BHAM              | LEVEL: 8                                |
| COURSE CODE: ANA801S                    | COURSE NAME: APPLIED NUMERICAL ANALYSIS |
| SESSION: JUNE 2019                      | PAPER: THEORY                           |
| DURATION: 3 HOURS                       | MARKS: 100                              |

| FIRST OPPORTUNITY EXAMINATION QUESTION PAPER |                     |  |
|----------------------------------------------|---------------------|--|
| EXAMINERS                                    | PROF. S. A. REJU    |  |
| MODERATOR:                                   | PROF. O. D. MAKINDE |  |

| INSTRUCTIONS                                                            |
|-------------------------------------------------------------------------|
| 1. Attempt ALL the questions.                                           |
| 2. All written work must be done in blue or black ink and sketches must |
| be done in pencils.                                                     |
| 3. Use of COMMA is not allowed as a DECIMAL POINT.                      |

#### **PERMISSIBLE MATERIALS**

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (including this front page)

#### QUESTION 1 [20 MARKS]

1.1 Consider the Simpson's rule:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[ f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$
(1.1)

State the extended rule for (1.1) where

$$h = \frac{(b-a)}{n}$$
;  $x_j = a + jh$  for each  $j = 0, 1, ..., n$  [1.5]

1.2 Hence apply the extended Simpson's rule to approximate the following integral (correct to 4 decimal places):

$$\int_{a}^{b} f(x)dx = \int_{0}^{4} 2.5e^{x} \sin(x)dx \tag{1.2}$$

using the sub-intervals [0, 1],[1, 2],[2, 3], and [3, 4] (i.e. when  $h = \frac{1}{2}$ ).

Obtain the exact integral for (1.2) and hence determine the errors when using (1.1) and the extended rule version, stating the better approximation. [23.5]

### **QUESTION 2 [25 MARKS]**

Consider the 2-point Gaussian quadrature rule:

$$\int_{a}^{b} f(x)dx \approx c_{1}f(x_{1}) + c_{2}f(x_{2})$$
 (2.1)

2.1 Show that the weights and the points in (2.1) are given by:

$$c_{1} = \frac{b-a}{2}, \quad c_{2} = \frac{b-a}{2}$$

$$x_{1} = \left(\frac{b-a}{2}\right)\left(\frac{-1}{\sqrt{3}}\right) + \frac{b+a}{2}, \quad x_{2} = \left(\frac{b-a}{2}\right)\left(\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}$$
[19]

2.2 Hence obtain the Gaussian 2-point approximation for the integral (1.2) in Question 1 and compare your solutions with the Simpson's rule and the extended Simpson's rule obtained in Question 1.[6]

#### QUESTION 3 [25 MARKS]

- 3.1 Discuss and derive the recursive scheme for the Forward Euler's Method, using any appropriate diagram for substantiating your discussion. [13]
- 3.2 Consider the following IVP:

$$\frac{dy(t)}{dt} + 2y(t) = 3e^{-4t}, \quad y(0) = 1$$

Using a step size of h = 0.1 and  $t_0 = 0$ , employ the method discussed in (3.1) to approximate up to the 5<sup>th</sup> step, giving your solution in a table showing both the exact and the approximate solution at each step. [12]

#### QUESTION 4 [30 MARKS]

4.1 Discuss with the aid of a diagram the 4<sup>th</sup> order Runge-Kutta (RK4) method

[16]

4.2 Consider the following IVP:

$$\frac{dy}{dx} = xy$$

$$y(1) = 5$$
(4.1)

Employing the RK4 method and using step size h = 0.1, solve (4.1) correct to three decimal places in the interval [1, 1.5]

**END OF QUESTION PAPER** 

**TOTAL MARKS = 100**